
TECHNOLOGY

Privatized Open Source
by Evan J. Zimmerman

Open source software is everywhere, but maintenance is
becoming an intractable challenge.

 INSIGHT | NOTE 24 Jun 2020

https://cmr.berkeley.edu/
https://cmr.berkeley.edu/browse/topics/technology/

“In a future that includes competition from open source, we can expect that the eventual

destiny of any software technology will be to either die or become part of the open

infrastructure itself.”

-Eric S. Raymond, Cathedral and the Bazaar

Open Source’s Sustainability Problem
For years, the word in the open source community has been sustainability. The problem is

this: open source is built on contributors, who are not paid by the community — after all,

code commits are called contributions — and which enables anyone to use and edit the

software without any renumeration. This has allowed open-source to be widely used, both

by scientists and big enterprises alike, and today signi�cant infrastructure on the

Internet is sometimes maintained by a single person working for free — for example,

OpenSSL, which secures two-thirds of all websites, has never been maintained by more

than four people.

This results in distribution for open-source, but it also results in questions of maintenance

and support, which has become a grand challenge. The Cathedral and the Bazaar, the

spiritual bible of open source, posited that open source would be sustained by social

rewards, or “egoboo.” But now it’s broken. Open-source is infrastructure and it’s straining

under the weight of its own scale, most visibly with the Heartbleed bug. Why?

Infrastructure is primarily about maintenance, which isn’t what most developers signed

up for, especially since it’s �nancially so precarious. There’s no passion in that—as Kurt

Vonnegut observed, humans love to build but not maintain—so all that’s left is ecosystem

dependence. The question is: how do you give entities the bene�ts of open source, such as

a guarantee of codebase visibility and the creative power of the hivemind, while mitigating

the challenges, like maintenance and support? In recent years, a solution has emerged:

privatized open source.

The core idea is simple. Take an open source project, mix it with the computing paradigm

of the day in what is essentially a wrapper, and sell it. The big successes include Redhat,

Github, Databricks, Con�uent, Hashicorp, and MongoDB, and more. Why did it take so long

https://github.blog/2019-01-17-lets-talk-about-open-source-sustainability/
https://www.linuxjournal.com/content/open-science-means-open-source-or-least-it-should
https://www.itnews.com.au/news/why-news-corp-loves-open-source-435770
https://www.vice.com/en_us/article/43zak3/the-internet-was-built-on-the-free-labor-of-open-source-developers-is-that-sustainable
https://www.nature.com/articles/d41586-019-02046-0
https://staltz.com/software-below-the-poverty-line.html

for open source projects to be properly commercialized? It’s quite likely that open source

software needed SaaS to be privatized. Of the successful privatized open source

companies, almost all are from the cloud and post-cloud era. The only notable pre-cloud

exception, Redhat, is at heart a consulting company (in the same sense as IBM, which

acquired it). This makes sense — prior to cloud, the value-add opportunities a company

could provide beyond the software itself were extremely limited.

There are a ton of advantages to this model. And, amazingly, it seems like it is a new,

repeatable business model.

Why Privatize Open Source?
With privatized open source, the market and technology have already been proven. In

order for this model to work, you must choose an open source project that is already in

wide use. That signi�cantly reduces the technology risk. Plus, there are automatic

stabilizers, as the open source community will support the project as it expands. In fact, it

becomes a �ywheel, as the more popular the project is the more interest developers will

have in the community, thus reducing the acquisition cost and churn in the market.

The �rst leads are also already there. If your project is suf�ciently popular on Github, you

probably have enough blue-chip engineers publicly associated with the project that if you

can convert even 10% of them you would have a legitimate unicorn. And it’s open source,

which means that potential customers don’t have as much risk in being your early

adopters — they’ve already adopted you — and the open source community gives some stability

to the core technology.

Lastly, privatized open source mixes the bene�ts of privatization with the strengths of

open source. By hiring core developers and paying them a salary, private open source

companies both provide something to pay for and an incentive to maintain good projects.

At the same time, by keeping open source open, private open source companies get the

bene�t of a community, which both reassures potential customers and provides a font of

creativity for the development of the platform.

These moats appear to be quite strong. Yes, a successful enterprise company builds

customer relationships, monopolizes key developers, and embeds its wrapper in

enterprise stacks. These are moats for every enterprise business, and they won’t go away

anytime soon. But it is also extremely dif�cult to create a legitimate competitor to the

leader within the same project. How will your competitors differentiate themselves from

you, exactly? You’ve already built the deployment standard and the core technology is out

there for everyone to use. The proof is in the pudding: there are very few meaningful

competitors to companies that have successfully privatized an open source project with

the notable exception of git, which has spawned Github and Gitlab. Even big companies

don’t seem able to use their muscle to kill privatized open source startups. Most notably,

AWS, which is perhaps the strongest arm in tech today, didn’t beat MongoDB but rather

angered the open source community with its attempted shiv.

Instead, the biggest risk privatized open source faces is obsolescence. Unlike with closed

source software, everyone can see the source code and anyone can clone or fork the repo.

As a result, developers can �nd the shortfalls in existing projects and create a competing

library. As an example, the biggest threat to Hortonworks was never another Hadoop

competitor. It was a threat to Hadoop itself, which came in the form of Spark and its

privatizer, Databricks. Those competitors, though, will also be open source, so a privatized

open source company can always compete on the usurper’s own roadmap to minimize the

wedge and even adopt those projects themselves as part of a broader enterprise solution.

Indeed, the biggest fail in privatized open source, Docker, ironically demonstrates just how

durable privatized open source software truly is. In truth, no one ever came up with a great

competitor to Docker’s version of containers. Instead, Docker the company was crushed by

Kubernetes, a container orchestration system that competed with Docker Swarm and

which, ultimately, consumed the primary enterprise value of the product because

orchestration rather than containerization itself is the main service companies need. It

wasn’t enough that Docker faced the full force of Google. It wasn’t enough that it faced a

new technology. No, Docker had to face all of these headwinds while bungling the

opportunity itself through horrid mismanagement. The case of Docker shows not how

quickly privatized open source companies can fail but how many things need to go wrong

for failure to occur.

https://www.theregister.co.uk/2018/10/16/mongodb_licensning_change/
https://www.techrepublic.com/article/why-doesnt-anyone-weep-for-docker/

What’s Next
When starting a company, one of the most dif�cult parts of getting �nancing is creating a

convincing signal of credibility for investors. Leading a popular open-source project is a

veri�able way to jumpstart that process, so it seems likely that this will be a route for key

employees running corporate open source projects to start companies, thus creating a new

vein for ma�a-style entrepreneurship networks. Just this month, Greylock led a round for

Chronosphere, which is privatizing Uber’s M3. A little while ago, they also co-led a round

with Sequoia for Rockset, which is commercializing Facebook’s RocksDB. There will be

more.

Nonetheless, it feels like this model is still being systematized as a method of starting and

operating businesses, like the lean startup method. We need this—yes, big tech companies

now support infrastructure projects the Linux Core Infrastructure Initiative, but it hasn’t

been enough and open-source bugs continue to proliferate. To survive, projects need

dedicated developers to roll up their sleeves, which requires payroll, and that’s only

possible if the projects are themselves self-sustaining. As experimentation continues, the

pace of privatized open-source startup creation will increase and the quality of those

startups will only go up. It will be an exciting time for the entire community and, for at

least some kinds of projects, the market could be the salvation open source was looking for.

Evan J. Zimmerman Follow

Evan J. Zimmerman is an entrepreneur, investor, and writer. He is the founder of Jovono, a venture
capital �rm, and Chairman of the Clinton Health Access Initiative technology council, which advises
the technology of global public health in dozens of partner countries.

https://www.whitesourcesoftware.com/open-source-vulnerability-management-report/
https://www.linkedin.com/in/ejz
https://www.twitter.com/ejzim

