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Machine learning can be a force for good, or a tool of
surveillance and oppression.
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Large-scale threats to society like the impact of climate change and COVID-19 will

continue to disrupt society, and lead to, as the International Monetary Fund puts it,

“wartime policy measures.” This will likely trigger extreme actions where government
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agencies use AI and access citizen data in ways that threaten privacy and other civil

liberties. Combining “wartime” threats with data-informed capabilities can also lead to

data sharing policies and practices biased in favor of quick �xes - for example, the Covid-

19 tracking apps inadvertently providing identifying information of infected

individuals. Here, the use of data can induce a maladaptive sense of shame, create

disgust towards those infected, and ultimately lead to systematic discrimination. In

short, recent AI and data-informed policy measures highlight the need for privacy

preserving approaches to data-informed policy while also incorporating suf�cient domain

expertise to minimize biased and unfair interventions.

Preserving Privacy and Debiasing Data-
Informed Policy
Fundamentally, machine learning (ML) is about turning data into intelligence that will

generalize to new data. There are several steps involved in developing an ML system for a

given problem. Figure 1a depicts a high-level view of a typical work�ow used within

industry.

Fig 1a. A typical machine learning work�ow.

Though this work�ow is standard practice, such an approach is not advisable when it

comes to policy because the downstream consequences can be detrimental without

explicit steps to preserve privacy and debias policy. Concerns can range from the

economic costs of ineffective interventions to signi�cant social costs associated with the

erosion of civil liberties. It is therefore important the work�ow has added features to

account for privacy threats and biased decision-making. Figure 1b depicts this modi�ed

work�ow incorporating four steps to a “machine learning policy support system.”
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To address the policy privacy problem (Step 1), we �rst introduce the state of the art in

privacy preserving machine learning as well as secure and remote computation. We then

combine advancements in machine learning and data science with research on human

biases to explore the policy decision-making problem (Steps 2-4). Along the way we also

supply concrete examples of how organizations are using these advancements. Ultimately,

we want practitioners and scholars to get a feel for what tools are available and why leaders

need to use them.

Fig. 1b. A modi�ed work�ow for a machine learning policy support system.

Step 1. End-to-End Privacy
Privacy preserving machine learning (PPML) is a policy issue that continues to grow in

importance. With relatively new legislation such as the General Data Protection Regulation

(GDPR) and the California Consumer Privacy Act (CCPA), privacy preservation is a topic of

interest among policymakers. Such regulation is important because ML models have

several stages where malicious actors can access and exploit user data. The areas of risk

include (a) within the training data, (b) when inputting user data, (c) model output data,

and (d) the model itself. This exposure is obviously a major concern given the pace at



which data-informed policy is spreading. In short, growing amounts of personal data

require privacy preserving technologies. Below is a sampling of common research and

development activities.

Differential Privacy

Differential privacy (DP) is a strong, mathematical de�nition of privacy in the context

of statistical and machine learning analysis. It enables the collection, analysis, and

sharing of statistical estimates based on personal data (i.e., patterns in groups) while

withholding information about any individual in the data. The intuition here is that DP can

“add noise” to user data before it is shared with other parties. When noise is applied, a

strict upper bound can be set on the amount of information leakage within any particular

query (in some cases 0, in other cases small but acceptable amounts of personal data).

Here, leaders can guard against “linkage attacks” where publicly available data overlaps

too closely with data held in anonymized datasets (e.g., see the oft-cited example where a

former Governor of Massachusetts had his sensitive medical records re-identi�ed

using overlap with his voter registration data).

Such linkage attacks have in part motivated the U.S. Census Bureau to incorporate DP into

their 2020 privacy strategy. Using DP, the Census Bureau can now share and analyze more

data than ever before to generate valuable social insights while maintaining privacy. In

addition, Microsoft’s geolocation system, PrivTree, uses DP to “mathematically blur” the

location of any speci�c individual in their database. Simply put, noise is added to the

original (identi�able) data and the subsequent PrivTree output is privatized, making it safe

for sharing and analysis. DP subsequently facilitates growth while preserving privacy -

thereby reducing the risk of lawsuits, bad PR, and so on. Commercial uses include

geographically targeted search engine results, location-based marketing, real-time

navigation, and �tness app data sharing.

Secure Computation

http://proceedings.mlr.press/v83/nissim18a.html
https://dl.acm.org/doi/10.1142/S0218488502001648


Secure multi-party computation (SMPC): Secure multi-party computation (SMPC) is a

sub�eld of cryptography with the goal of creating methods for parties to jointly

compute a function over their inputs while keeping those inputs private. The intuition

for SMPC is a cryptographic protocol that distributes a computation across multiple

parties where no individual party can see the other parties’ data. Simply put, multiple

parties can securely share sensitive information to gain valuable insights without needing

to rely on a third party.

Here is an example: Suppose LinkedIn wants to introduce a feature where a group of users

with similar jobs can share their salary data to see where they rank compared to each

other. One method LinkedIn could use to carry out this task is to trust a third party to

collect the salary data and provide the employees with averages. This, however, is labor

intensive at scale and not overly secure (e.g., the third party holding the data is attacked).

Rather, LinkedIn could introduce an SMPC protocol where user data is automatically

encrypted, the multi-party computation occurs, and the only output the user receives is

the average salary. A recent wage equity study conducted in Boston used such an

approach to assess gender pay gaps while ensuring actual female and male pay totals

never left employer servers. Commercially, companies such as Unbound Tech are

leveraging SMPC to provide secure computing solutions for many of the world’s largest

banks and Fortune 500 companies.

Trusted execution environments (TEEs): A trusted execution environment (TEE), or

secure enclave, is a secure area of a main processor or chip (i.e., System on Chip)

within a mobile phone. Code and data loaded inside are protected with respect to

con�dentiality and integrity. A TEE has an isolated execution environment providing

security features such as “isolated execution.” The intuition is that the user data used for

ML model training and predictions stays in an environment secured at the hardware level

(i.e., it is not accessible by other users).

This protected area can, for example, help leaders expand democratic engagement by

creating a privacy-preserving environment for electronic voting. It also has signi�cant

implications for how individuals manage their medical records and �nancial information.

https://www.researchgate.net/profile/Oded_Goldreich/publication/2934115_Secure_Multi-Party_Computation/links/00b7d52bb04f7027d4000000.pdf
https://cacm.acm.org/magazines/2017/2/212427-user-centric-distributed-solutions-for-privacy-preserving-analytics/fulltext
https://ieeexplore.ieee.org/document/7345265
https://ieeexplore.ieee.org/document/9064387


Visa, for example, recently developed LucidiTEE and acquired Plaid (one of the world’s

largest �ntech �rms) for $5.3 billion in a bid to capitalize on secure enclave capabilities in

the payments industry.

Fully homomorphic encryption: Fully homomorphic encryption (FHE) is a privacy

preserving approach where the inputs, output, and intermediate data values are

always encrypted. The intuition here is that executed operations occur directly on the

encrypted data instead of having to decrypt �rst. This allows the developer to implement

training or inference without ever seeing user data, and leaders can take advantage of

cloud computing (i.e., access to a shared pool of computing resources) while preserving

privacy. Any application can (theoretically) be run in this encrypted state, such as ef�cient

energy grids or robust pandemic responses.

Though dataset size is an issue for this computationally intensive process, solutions are

emerging for commercially viable applications. The outcomes will add value to many

security-relevant tasks such as data sharing, data monetization, and cloud computing -

here are three use cases to consider. In short, FHE is the gold standard of secure

computation.

Remote Computation

Federated learning: Federated Learning (FL) is a distributed machine learning

approach that enables training on a large corpus of datasets in “devices” such as

mobile phones while ensuring the data stays local. FL is a rapidly growing area of

research and development. A Google Scholar search for “federated learning” indicates that

papers mentioning FL increased �ve times from 2018 to 2019, and in the �rst half of 2020

alone, there were 1050 FL papers published.

The intuition here is that the user’s data stays in the device and only returns the gradients

resulting from local training. The gradients from all the participating devices are securely

aggregated into a central server to update a model. The model is then sent back to the edge

devices providing improved performance by leveraging updates across the various devices

on the network without revealing any of the private information used to train the model.
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Leaders can then use data-informed predictions without compromising privacy (e.g., using

a federated network of datasets housed in everything from hospital databases to

smartwatches for monitoring Covid-19 symptoms and predicting outbreaks). This means

that organizations do not need to centralize and amass mountains of sensitive data –

thereby exposing themselves to privacy attacks, lawsuits, and so on. It is therefore only a

matter of time until many (if not most) sectors adopt this system of collaborative learning.

The Mayo Clinic, for example, recently launched the Clinical Data Analytics Platform,

allowing a network of participating organizations (e.g., universities, private companies,

and government agencies) to collectively train algorithms for improving healthcare

outcomes while keeping their stakeholder’s data securely on-site. The applications include

everything from image recognition for detecting heart disease to pharmaceuticals. The

takeaway is that FL allows for unprecedented levels of research and development while

upholding ethical standards and privacy.

The Human Factor

Even with this extensive push to solve the privacy problem, the above technologies cannot

account for many types of human error. Indeed, data and analytics can occur in a secure

vault, but if the quality of data and analytics is biased before entering the vault, then the

outcome is still �awed. This brings us to the decision-making problem.

Data-informed policy incorporating only a narrow and siloed band of social science, for

instance, will miss important implications. Covid-19 shaming stemming from hasty policy,

for example, contributed to death threats and possibly even suicide. Such decision-

making policy errors are associated with human cognitive biases. The world is extremely

complex, and humans tend to compartmentalize information to create order and

meaning. It is therefore not surprising policy biases associated with knowledge silos and

snap judgements emerge. This is where advancements in ML and data science, now

con�gured for decision support, can help leaders debias policy.

Step 2. Debiased Problem Formation
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Natural language processing (NLP) applications such as topic modeling and word

embedding can help leaders better de�ne the problem. A topic model illuminates the

topics occurring in a collection of documents while word embedding can transform raw

text data into usable insights. A policymaker, for example, traditionally employs analysts to

de�ne a problem based on their reading of scienti�c documents, scouring of social media,

and reviewing of news media. Now, NLP advancements can do this at a much larger scale

and generate an exceptionally clear picture of the problem.

The intuition is that leaders can use NLP to scan large amounts of information regarding a

speci�c topic (from diverse perspectives) to better understand a problem. For example,

why are some experts for and some against the use of tracking and tracing apps? This

approach supplies objective insights into how different groups perceive an issue and what

topics the problem needs to consider. Such a process helps overcome cognitive biases such

as the con�rmation bias (i.e., the tendency to search for and/or interpret information that

con�rms one’s prior beliefs and/or values) and anchoring (i.e., the tendency to focus too

heavily on an initial piece of information).

We particularly focus on NLP because expert knowledge across disciplines is often

encoded in language. NLP, for example, can capture Covid-19 research from purely

qualitative disciplines to written summaries in applied mathematics – thus delivering a

richer understanding of the problem. One such tool is COVIDScholar from Lawrence

Berkeley National Laboratories. As stated in a recent news release, COVIDScholar, “uses

natural language processing techniques to not only quickly scan and search tens of

thousands of research papers, but also helps to draw insights and connections that may

otherwise not be apparent. The hope is that the tool could eventually enable automated

science.” This debiased, “automated science” allows leaders to explore a broader

knowledge space when formulating the problem. In short, it is a guided tour of knowledge.

Step 3. Debiased Solution Formation
Knowledge graphs and recommender systems can then help leaders understand where

the debiased problem �ts within an existing network of knowledge. A knowledge graph is a

programmatic approach for modeling knowledge domains and understanding their
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interconnectedness. A recommender system is also able to �lter vast amounts of

information to create domains and recommend content. Collectively, they can map the

properties of a subject area and suggest choices otherwise overlooked. Thus, instead of

biased mental models and narrow solutions, knowledge graphs and recommender

systems broaden the solution space.

The intuition is that once a leader accurately formulates a strategic problem using NLP

(Step 2), the subsequent key words and phrases de�ning the problem integrate into a

knowledge graph and recommender system to map the problem and generate

recommendations for developing a debiased solution (e.g., recommending experts on

shame when developing Covid-19 solutions). Further, where typical recommender systems

homogenize recommendations, scientists are now combining complex knowledge graphs

with recommender systems to broaden the search space, thus leading to more accurate

solutions - see this recent article from Microsoft Research.

This step helps overcome biases such as “judgement by prototype.” This is where an

individual decides what knowledge is necessary to solve a problem based on salient

aspects of its prototype. For example, pandemic problems being prototypically judged as

requiring medical professionals and economists while discounting less prototypical

aspects of the problem (e.g., knowledge associated with shame and discrimination).

Several companies are using knowledge graphs and recommender systems to counteract

such biases. Thomson Reuters, for example, launched their �rst knowledge graph in

2017 to help guide policy and practice in the �nance sector. Their knowledge graphs

compile a wide range of data about organizations and people (e.g., �lings, reports, M&As),

allowing companies to better plan their research and more accurately formulate solutions.

Similarly, Ericsson is creating a self-adapting system using a knowledge graph to

autonomously develop and implement solutions.

Step 4. Debiased Deployment
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Finally, ML auditing works to mitigate any remaining bias and unfairness in deployed

models. Leaders, for example, may deploy interventions based on false or skewed

assumptions about various demographic groups. So, even if Steps 1-3 preserve privacy,

appropriately de�ne a policy problem, and formulate a robust solution, biases hidden in

the leader, data, and/or algorithm can still degrade policy.

The intuition is that the audit reduces an intervention’s likelihood of undeserving or

overserving any speci�c individual or group. In terms of real-world applications, Aequitas,

an open-source ML auditing toolkit, for example, uses a “fairness tree” to link different

types of fairness with speci�c real-world policy problems. For instance, the tree

speci�cally asks if the intervention is intended to affect all groups equally or proportional

to the group’s percentage in the overall population. Such an approach works to mitigate

unintended effects (e.g., Covid-19 policies disproportionately harming ethnic

minorities and migrant women). Here, debiasing incorporates domain experts in areas

such as discrimination and inequality. These experts, in consultation with policymakers

and data scientists, will help calibrate ethical aspects of data-informed interventions before

deployment – thus reducing the need for after-the-fact damage control.

Such a process works to overcome instances when leaders overestimate an intervention’s

ef�cacy based on speci�c examples of success without considering an overall failure rate

(i.e., base-rate neglect). Incorporating a debiasing audit also helps to avoid policy decisions

swayed by ingroup favoritism and ultimate attribution errors (e.g., promoting a

pandemic mitigation policy assuming a group’s �awed behavior causes the spread of

disease when contextual factors are the underlying cause). Finally, auditing also

minimizes a leader’s “bias blind spot” (i.e., recognizing the impact of biases on others, but

not seeing the impact on one’s own decision-making).

Step 4 is hugely important because it is the last chance to catch bias before stakeholders

start to “feel” policy. The outcome of biased policy touching ground has far-reaching and

long-term consequences. Governmental institutions may inadvertently discriminate

against certain groups such as the well-documented problems with ML-informed policy

in the criminal justice system, and �rms might rely on biased ML-informed policy in their

hiring and promotion practices, leading to further discrimination in the workplace. Step

4, accordingly, is mandatory quality assurance.
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Concluding Remarks
Using technological advancements to preserve privacy and debias policy surrounds

leaders with a host of relevant domain experts, engineers, and data scientists. Moving

forward, it is thus advantageous, completely feasible, and increasingly important to

develop a machine learning policy support system. The four steps we introduce offer a

path towards this modern and increasingly bene�cial form of governance.
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