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Advanced analytics projects require special attention on people
and processes.
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Although a lot has been written about how to build an advanced analytics team, and what

the organizational strategy should be to bridge the gap between business and advanced

analytics teams, there is little advice on how to effectively “operationalize” an analytics

team. The implementation of advanced analytics projects is still a major problem across

industries. Based on a Gartner study, about 85% of analytics and big data initiatives fail to

move past preliminary stages. Even of the projects that do get adopted, only about less

than 20% provide any measurable business value. A recent survey across industries done

by New Vantage highlights that 95% of the executives identify people and processes as the

main obstacle to execution of these analytics projects. To say this is concerning is an

understatement as billions of dollars will be spent on advanced analytics and AI initiatives

—$59 billion globally by 2027 by one estimate.

One of the core problems for such abysmally low success rates is how analytics teams

usually operate. All too often, analytics teams operate as “order takers” responding to half-

baked requests from business stakeholders. The so-called problem discovery phase

involves identifying a business problem where a data driven analytics solution has the

potential to generate better predictions. With a shiny “data” problem in hand, the analytics

team will go to town and build a sophisticated model that leverages cutting edge ML

algorithms and so called big-data tools. But then, much to their surprise, the “advanced”

analytics solution is snubbed by their stakeholders or does not get adopted. What

happened? Far too often, a thorough understanding of paths and processes leading to

business decisions is ignored and most of the time is spent on creating sophisticated

algorithms. Instead of building tools and processes to ensure last-mile business

integration, efforts are spent on data discovery, cleaning, and getting the “model” right.

The professional development of the analytics staff and the choice of tools take precedence

over business results.

In our several years of combined professional experience in the advanced analytics space,

we have seen numerous times when analytics teams ignore people and processes at their

own peril. To increase adoption of analytics initiatives, we need to put decisions and

decision makers at the center, not technologies and algorithms. We argue that being close

to the decisions—not only data—forces the analytics team to act like stakeholders

themselves which ultimately leads to higher rates of adoption.
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The following �gure depicts the proposed work�ow to carry out an analytics initiative in

comparison to a typical structure. The standard work�ow involves leading with data

analytics to drive decisions whereas the proposed framework focusses on making

decisions that are informed by analytics driven processes. The following section provides

an in-depth discussion of these steps.

Figure 1: Analytics Work�ow

Identifying high value decisions
To identify high value decisions, the analytics teams need to spend a signi�cant amount of

time in the trenches to understand how businesses are run on a daily basis. A thorough

understanding of current business processes, the quality of decisions made along the way,

and the people making those decisions leads to much more effective problem

identi�cation. High value decisions that are ripe for an analytics solution tend to fall at the

intersection of their a) analytics feasibility, b) estimated business impact, and c) place in

stakeholders’ priorities. If all these conditions are met, a decision has the potential to be

informed by analytics driven processes. We have seen several failed analytics initiatives

where efforts were launched even when one or more of these conditions were not met.



Building trust with the stakeholder(s) making
those decisions
Research has shown that people are naturally averse to algorithms. They erroneously

avoid algorithms after seeing them err, even if they are more accurate in general, and

would prefer to choose a human forecaster over a statistical algorithm. Faced with an

uphill battle, it becomes even more important to lead with a profound understanding of the

“psychology” of decision makers rather than leading with “technology”, which can

increase both the level of trust with stakeholders and the likelihood of adoption. The ideal

situation is when the stakeholder considers you and your team as “thought partners” and

not as a support function. It is necessary to begin by meeting with the “troops on the

ground” to completely understand how decisions are currently being executed, what

assumptions are made along the way, and what their frustrations are.

Model building to focus on explainability and
shared performance metrics
Powered with knowledge about the right decision(s) to tackle and a deep understanding of

the stakeholders, now it’s time to think through solutions. The goal of the proposed

analytics driven framework should be threefold: it makes your stakeholders more ef�cient,

the modeling approach is explainable, and you can root-cause any signi�cant �uctuations

in the predictions. The analytics framework should use the insights from the subject

matter experts in your stakeholder’s team as the data doesn’t always contain all the

variables that go into decision making. The proposed solution should be framed as a joint

venture with a shared performance scorecard between the business team and the analytics

team.

Prototyping and demonstrating value

https://www.researchgate.net/publication/268449803_Algorithm_Aversion_People_Erroneously_Avoid_Algorithms_After_Seeing_Them_Err


Once you have the green light from your stakeholder with respect to the methodology, it’s

time to start doing the actual “data science” or “advanced analytics.” This is where the data

science team can provide massive value through their technical knowledge, algorithm

thinking, and data savviness. However, the focus here shouldn’t just be on validating the

model accuracy. Instead, the analytics solution should lead to a more data driven decision-

making process leading to better business outcomes. The analytics team should create a

prototype, conduct quick A/B testing, and track improvements in underlying metrics that

de�ne good decisions. If initial testing leads to desired or better outcomes, move towards

creating a minimum viable product (MVP) that stakeholders can start using effectively and

which can be �eld tested.

Deployment and business process integration
This is when the rubber actually meets the road. After the clear value of the analytics

product has been demonstrated, the team needs to make sure that it can be fully

integrated into the business processes, and they have the right resources to scale it up for

full implementation. This requires support of all parties involved including the

engineering team, the analytics team, and the business team. It’s very important that the

team marches on to get to the �nish line. The job doesn’t end after the analytics solution

has been fully built out—you also need to have a “maintenance” plan to keep improving

and updating the underlying methodology, data, and logic.

A case study:
The operations analytics and data science team at one of the largest department stores in

the US practices the decision backward approach on a regular basis to provide value to

their business stakeholders. Let’s illustrate with an example how they have successfully

used the abovementioned framework for a high value business and operational decision.

Stage 1: Identifying a high value decision



After spending signi�cant time to understand the current business processes, the

analytics team identi�ed a high value business decision that was ripe for an analytics

solution. In particular, the business team had an inventory utilization problem that drove

multi-million-dollar warehouse planning decisions (satisfying the business value merit).

Private label goods account for a signi�cant portion of both units and dollars sold at the

company. Order decisions were made up to one year prior to receipt, so up to 30% of

ordered units are held in the warehouse to �ll in stores as the need arises throughout the

season (high on stakeholders’ list of priorities). The analytics teams realized that building

a prescriptive analytics engine into the system would allow for revenue to be maximized

on the sunk cost of the goods by understanding the current and future value of the

merchandise in the warehouse (feasible from an analytics standpoint).

Stage 2: Building trust

Operating as thought partners, as opposed to a support function, the analytics team

worked with the merchant team’s managers and spent days to make sure the business

model was completely understood. Moving all of the merchandise to stores too early in the

season means that all of their bets had been placed prior to gaining information about how

stores would sell the product throughout the season. Waiting too late to transfer the

merchandise means that there were opportunities to sell merchandise at full price that are

now destined to sell at a reduced price.

Stage 3: A “joint venture” with shared performance metrics

Instead of typical model evaluation metrics like turns or year-over-year inventory dollars

by store, the analytics and business brainstormed metrics that drove real business value.

After various discussions, in-stock rates and revenue were jointly decided as the key

metrics for both the business and analytics teams. The business stakeholders were also

interested in the amount of inventory remaining in the warehouse in comparison to the

initial purchase quantity so that they could track the behavior of the model in �tting their

business needs and higher-level metrics. Being understocked in stores early in the season

and overstocked in the warehouse at the end of the season (or vice versa) would show that

the model needed to be reevaluated. The shared performance metrics made sure that both

teams were vested in the success of the analytics solution.



Stage 4: Prototyping

Several illustrative predictive models were run on historical data. The analytics teams

created a prescriptive modeling engine by automating data collection, model building, and

sharing of the results, leading to a much more effective decision-making process.

Merchandise was selected using both the business stakeholders’ expertise and the raw

results from the analytical models. The analytics team monitored business metrics and

regularly checked in with the business unit throughout the season, to make sure that the

testing period was robust enough to generalize the model.

Stage 5: Business integration

After seeing the results of the pilot, both the business stakeholders and the analytics team

felt comfortable in rolling the solution out to the rest of the merchandise as appropriate.

Speci�c tools were created for business teams to easily access the model results and root-

cause any signi�cant deviations. This level of trust with the initial merchant group has

allowed conversations with merchants in other categories who have similar business cases

to move quickly.

Conclusions
The working arrangement for analytics teams needs a paradigm shift. Analytics teams

need to follow decisions backwards by aligning themselves close to the decisions, not only

data and/or technology. Leading with decisions to be made and having skin in the game

forces analytics teams to act like stakeholders themselves which ultimately leads to better

project planning and higher rates of adoption.
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